GLF71325

^{D POWER}Low RON IoSmartTM Power Switch with Slew Rate Control

Product Specification

DESCRIPTION

The GLF71325 is an ultra-efficiency, 4A rated, integrated load switch with integrated slew rate control. The best in class efficiency makes it an ideal choice for use in lower power subsystems and mobile electronics.

The GLF71325 features an ultra-efficient I_QSmart^{TM} technology that supports the lowest R_{ON} , quiescent current (I_Q) and shutdown current (I_{SD}) in the industry. Low R_{ON} reduces conduction losses, while low I_Q and I_{SD} solutions help designers to reduce parasitic leakage current, improve system efficiency, and increase battery lifetime.

The GLF71325 integrated slew rate control greatly enhances system reliability by mitigating bus voltage swings during switching events. Where uncontrolled switches can generate high inrush currents that result in voltage droop and/or bus reset events, the GLF slew rate control specifically limits inrush currents during turn-on to minimize voltage droop.

The GLF71325 can be used in multiple voltage rail applications which helps to simplify inventory management and reduces operating cost.

The GLF71325 offers best in class size and resistance performance utilizing a wafer level chip scale packaging with 6 bumps in a 0.97mm x 1.47mm x 0.55mm die size and a 0.5mm pitch.

FEATURES

- Wide Input Range: 1.1V to 5.5V
 6V abs max
- Controlled Rise Time: 2.2ms at 3.3VIN
- Low R_{ON} : $18m\Omega$ Typ @ $3.3V_{\text{IN}}$
- Ultra-Low Io: 1 nA Typ @ 3.3VIN
- Ultra-Low I_{SD}: 16nA Typ @ 3.3V_{IN}
- IOUT Max: 4A @ 5.5VIN
- Internal EN Pull-Down Resistor
- Integrated Output Discharge Switch
- Wide Operating Temperature Range: -40°C ~ 105°C
- HBM: 6kV, CDM: 2kV
- Package: 0.97mm x 1.47mm WLCSP

APPLICATIONS

- Low Power Subsystems
- Data Storage, SSD
- Mobile Devices

PACKAGE

0.5mm pitch WLCSP

APPLICATION DIAGRAM

ORDERING INFORMATION

Part Number	Top Mark	R₀ℕ (Тур) at 3.3V	Output Discharge	EN Activity
GLF71325	HL	18 mΩ	80Ω	High

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATION

Figure 2. 0.97mm x 1.47mm x 0.55mm WLCSP

Pin #	Name	Description
A1, B1	Vout	Switch Output
A2, B2	Vin	Switch Input. Supply Voltage for IC
C1	GND	Ground
C2	EN	Enable to control the switch

GLF71325 Low Ron IQSmart[™] Power Switch with Slew Rate Control

ABSOLUTE MAXIMUM RATINGS

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions; extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter			Max.	Unit
Vin, Vout, Ven	Each Pin Voltage Range to GND			6	V
Іоит	Maximum Continuous Switch Current			4	А
PD	Power Dissipation at $T_A = 25^{\circ}C$			1.2	W
T _{STG}	Storage Junction Temperature			150	°C
TA	Operating Temperature Range			105	°C
θ _{JA}	Thermal Resistance, Junction to Ambient			85	°C/W
FOD		Human Body Model, JESD22-A114	6		
ESD	Electrostatic Discharge Capability	Charged Device Model, JESD22-C101	2		kV

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min.	Max.	Unit
Vin	Supply Voltage	1.1	5.5	V
T _A	Ambient Operating Temperature		+105	°C

ELECTRICAL CHRACTERISTICS

 V_{IN} = 1.1V to 5.5V, typical values are at V_{IN} = 3.3V and T_{A} = 25°C. Unless otherwise noted

Symbol	Parameter	Condi	tions	Min.	Тур.	Max.	Units
Basic Oper	ation						
Vin	Supply Voltage			1.1		5.5	V
		EN = Enable, I _{OUT} =0mA, V	$I_{\rm IN} = V_{\rm EN} = 3.3 V$		1		
		EN=Enable, I _{OUT} =0mA, V _{IN} =V _{EN} =3.3 V, Ta=85°C ⁽⁴⁾			7		- nA
		EN=Enable, I _{OUT} =0mA, V _{IN} =V _{EN} =3.3V, Ta=105°C ⁽⁴⁾			30		
lq	Quiescent Current	EN = Enable, I _{OUT} =0mA, V _{IN} = V _{EN} =5.5V			3		
		EN=Enable, I _{OUT} =0mA, V _{IN} =V _{EN} =5.5V, Ta=85°C ⁽⁴⁾			10		
		EN=Enable, Iout=0mA, Vi	=V _{EN} =5.5V, Ta=105°C ⁽⁴⁾		40		1
		EN = Disable, Iout=0mA, \	/ _{IN} =1.1V		9		
		EN = Disable, Iout=0mA, \	/ _{IN} =1.8V		11		nA
		EN = Disable, I _{OUT} =0mA, \	/ _{IN} =3.3V		16	25	
		EN = Disable, Iout=0mA, \	/ _{IN} =3.3V, Ta=85°C ⁽⁴⁾		1.1		uA
		EN = Disable, Iout=0mA, \	/ _{IN} =3.3V, Ta=105°C ⁽⁴⁾		4		
I _{SD}	Shut Down Current	EN = Disable, I _{OUT} =0mA, V _{IN} =4.5V			30		nA uA
		EN = Disable, I _{OUT} =0mA, V _{IN} =5.5V			50	100	
		EN = Disable, I_{OUT} =0mA, V_{IN} =5.5V, Ta=55°C ⁽⁴⁾			250		
		EN = Disable, I _{OUT} =0mA, V _{IN} =5.5V, Ta=85°C ⁽⁴⁾			1.7		
		EN = Disable, I _{OUT} =0mA, V _{IN} =5.5V, Ta=105°C ⁽⁴⁾			5.5		
		VIN=5.5V IOUT= 500mA Ta = 2	Ta = 25°C		15	17	- - - mΩ
			Ta = 85°C		17		
			Ta = 105℃		18		
			Ta = 25°C		18	21	
Ron	On-Resistance	V _{IN} =3.3V, I _{OUT} = 500mA	Ta = 85°C		21		
			Ta = 105°C		22		
		louт= 300mA	V _{IN} =1.8V		28		
		Ιουτ= 100mA	V _{IN} =1.1V		55		
R _{DSC}	Output Discharge Resistance	E _N =Low, I _{FORCE} = 10mA			80	100	Ω
11030		V _{IN} =1.1-1.8V		0.9	00	100	V
VIH	EN Input Logic High Voltage	V _{IN} =1.8-5.5V		1.2			V
		VIN=1.1-1.8V		1.2		0.3	v
VIL	EN Input Logic Low Voltage					0.4	v
R _{EN}	EN pull down resistance			7	10.1	13	MΩ
IEN	EN Current	E _N =5.5V		-	10.1	0.8	μΑ
	Characteristics			1		0.0	<u>μν</u>
t _{dON}	Turn-On Delay ⁽¹⁾				1.5		ms
t _R	Vout Rise Time ⁽¹⁾	R _{OUT} =150Ω, C _{OUT} =1.0µF			2.2		ms
	Turn-Off Delay ^(2, 3, 4)				9		us
NUOFF	rain on Doluy	R _{out} =150Ω, C _{out} =1.0μF					43

Notes: 1. $t_{ON} = t_{dON} + t_R$

2. $t_{OFF} = t_{OFF} + t_F$ 3. Output discharge path is enabled during off. 4. By design; characterized; not production tested.

TIMING DIAGRAM

Figure 3. Timing Diagram

TYPICAL PERFORMANCE CHARACTERISTICS

POWER

INTEGR

Figure 8. Shut Down Current vs. Input Voltage

Figure 5. On-Resistance vs. Temperature

Figure 7. Quiescent Current vs. Temperature

INTEGRATED

POWER

Figure 10. EN Input Logic High Threshold

Figure 12. EN Input Logic Low Threshold

Figure 13. EN Input Logic Low Threshold Vs. Temperature

RISE TIME (us)

INTEGRATED

POWER

Figure 16. Output Discharge Resistance vs. Temperature

Figure 17. Enable Pulldown Current vs. Temperature

Figure 18. Turn-On Response V_{IN} =3.3V, C_{OUT}=1.0uF, R_L=150 Ω

Figure 18. Turn-On Response V_{IN} =3.3V, C_{OUT} =10uF, R_L =150 Ω

Figure 19. Turn-Off Response VIN=3.3V, Cout=1.0uF, RL=150Ω

Figure 19. Turn-Off Response V_{IN} =3.3V, C_{OUT}=10uF, R_L=150 Ω

Figure 20. Turn-On Response VIN=3.3V, Cout=22uF, RL=150Ω

Figure 22. Turn-On Response V_{IN} =3.3V, C_{OUT}=47uF, R_L=150 Ω

Figure 24. Turn-On Response V_{IN} =3.3V, C_{OUT}=100uF, R_L=150 Ω

Figure 21. Turn-Off Response V_{IN} =3.3V, Cout=22uF, RL=150 Ω

Figure 23. Turn-Off Response V_{IN} =3.3V, C_{OUT} =47uF, R_{L} =150 Ω

Figure 25. Turn-On Response V_{IN} =3.3V, C_{OUT}=100uF, R_L=150 Ω

APPLICATION INFORMATION

POWER

The GLF71325 is an integrated 4A, Ultra-efficient l_QSmart[™] load switch device with a fixed slew rate control to limit the inrush current during turn on. Each device is capable of operating over a wide input range from 1.1V to 5.5V with very low on-resistance to reduce conduction loss. In the off state, these devices consume very low leakage current to avoid unwanted standby current and save limited input power. The package is a 0.97mm x 1.47mm x 0.55mm wafer level chip scale package, saving space in compact applications. It is constructed using 6 bumps, with a 0.5mm pitch for reliable manufacturability.

Input Capacitor

A capacitor is recommended to be placed close to the V_{IN} pin to reduce the voltage drop on the input power rail caused by transient inrush current at start-up. A higher input capacitor value can be used to further attenuate the input voltage drop.

Output Capacitor

An output capacitor is recommended to mitigate voltage undershoot on the output pin the moment when the switch is turned off. Undershoot can be caused by parasitic inductance from board traces or intentional load inductances. If load inductances do exist, use of an output capacitor can improve output voltage stability and system reliability. The C_{OUT} capacitor should be placed close to the VOUT and GND pins.

EN pin

The GLF71325 can be activated by EN pin high level. Note that the EN pin has an internal pull-down resistor to help pull the main switch to a known "off state" when no EN signal is applied from an external controller.

Output Discharge Function

The GLF71325 has an internal discharge N-channel FET switch on the VOUT pin. When EN signal turns the main power FET to an off state, the N-channel switch turns on to discharge an output capacitor quickly.

Board Layout

All traces should be as short as possible to minimize parasitic inductance effects. Wide traces for VIN, VOUT, and GND will help reduce voltage drops, and parasitic effects during dynamic operation as well as improve the thermal performance at high load currents.

PACKAGE OUTLINE

	- —E	1	
	SE	- 1	
1	\bigcirc	\bigcirc	A
	\square	\bigcirc	BÌ
,	\bigcirc	(+)	С
			-
	L6X Ø	0	
	\$ Ød	dd 🕅 C	ВΑ

	Dimensional Ref.						
REF. Min.		Nom.	Max.				
Α	0.500	0.550	0.600				
A1	0.225	0.250	0.275				
A2	0.275	0.300	0.325				
D	1.460	1.470	1.485				
Е	0.960	0.970	0.985				
D1	0.950	1.000	1.050				
E1	0.450	0.500	0.550				
b	0.260	0.310	0.360				
е	0	.500 BS	C				
SD	0	.000 BS	0				
SE	0	.250 BS	C				
Τc	Tol. of Form&Position a 0.10 b 0.10						
ааа							
bbb							
000							
ddd		0.05					

Notes

1. AU DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGREES).

2. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M-1994.

SPECIFICATION DEFINITIONS

Document Type	Meaning	
Target Specification	This is a target specification intended to support exploration and discussion of critical needs for a proposed or target device. Spec limits including typical, minimum, and maximum values are desired, or target, limits. GLF reserves the right to change limits at any time without warning or notification. A target specification in no way guarantees future production of the device in question.	Design / Development
Preliminary Specification	This is a draft version of a product specification. The specification is still under internal review and subject to change. GLF reserves the right to change the specification at any time without warning or notification. A preliminary specification in no way guarantees future production of the device in question.	Qualification
Product Specification	This document represents the anticipated production performance characteristics of the device.	Production

DISCLAIMERS

Information in this document is believed to be accurate and reliable, however GLF assumes no liability for errors or omissions. Device performance may be impacted by testing methods and application use cases. Users are responsible to independently evaluate the applicability, usability, and suitability of GLF devices in their application. In no case will GLF be liable for incidental, indirect, or consequential damages associated with the use, mis-use, or sale of its product. Customers are wholly responsible to assure GLF devices meet their system level and end product requirements. GLF retains the right to change the information provided in this data sheet without notice.